
Protecting a Flutter mobile application by
relying only on the built-in name obfuscation,
or by wrapping the app, may deter the casual
attacker, but often prove to be no match for
experienced reverse engineers and modders.

Simple protection solutions are
easily defeated.

ORIGINAL APPLICATION

PROTECTION LAYER

Compiler-based solutions are much more
effective at deterring reverse engineers
and modders.

Compiler-based protection solutions modify
the app’s code itself and provide protection
against static and dynamic analysis.

Replacing the Flutter engine with a tool like
Reflutter, is a well-known attack technique
enabling reverse engineers to control the
execution of the protected application
through a modified engine.

Protecting the interface between
the code and Flutter engine is
just as critical as protecting the
source code to deter Flutter engine
replacement attacks.

Unprotected or easily detected links between
the code and the Flutter engine will result in
an easily modified and controlled app.

ORIGINAL
FLUTTER
RUNTIME

PROTECTED
USER CODE

ORIGINAL
USER CODE

PROTECTED
FLUTTER
RUNTIME

Using only simple
techniques like renaming
classes and methods, which
can be easily defeated,
leaves your app vulnerable.

STATICALLY PROTECTED
APPLICATION

Adding more complex obfuscation
techniques, along with RASP & runtime
monitoring, will provide the strongest
mobile application protection.

PROTECTED APPLICATION

www.guardsquare.com

PROTECTED APPLICATION

PROTECTED
FLUTTER RUNTIME

PROTECTED
USER CODE

https://www.guardsquare.com/
http://www.guardsquare.com
http://www.guardsquare.com
https://www.guardsquare.com/blog/flutter-mobile-application-protection-dos-and-donts

