
OWASP M MSTG

Curious security issues and how to protect
mobile apps against them

By Andre Carvalho, Software Engineer and Daniel Schwendner, Software Developer

MASVS/MSTG

MSTG Categories
MSTG-ARCH 

This category lists requirements pertaining to architecture and design of the app. 
 
MSTG-STORAGE  

The protection of sensitive data, such as user credentials and private information  
 
MSTG-CRYPTO 

Assuring the cryptography used by the application follows the industry best practices  
 
MSTG-AUTH  

Requirements regarding how user accounts and sessions are to be managed  
 

MSTG Categories
MSTG-NETWORK 

This category ensures the confidentiality and integrity of information exchange between the mobile app and remote
service endpoints  

MSTG-PLATFORM 
Ensuring the APP uses platform APIs and standard components in a secure manner

MSTG-CODE  
Ensure that basic security coding practices are followed during development and that “free” security features offered by

the compiler are activated  

MSTG-RESILIENCE  
Defense-in-depth measures recommended for apps that process, or give access to, sensitive data or functionality

Which Security Issues We Will Analyze
1. Android Networking

1.1. Cleartext communications
1.2. Missing backend attestation 

2. Android Platform
2.1. Input interception 

3. Android Data Storage
3.1. Sensitive Data Disclosure

a. Logging
b. Send data to web
c. Writing data to disk

1. Android Networking

Cleartext Communications: What is it? 🤔
● In cryptography and computer security, a man-in-the-middle attack is a cyberattack where the attacker secretly relays and

possibly alters the communications between two parties who believe that they are directly communicating with each other,
as the attacker has inserted themselves between the two parties.

● Cleartext is any transmitted or stored information that is not encrypted or meant to be encrypted. When an app
communicates with the server using a cleartext network traffic, such as HTTP, it could raise the risk of eavesdropping and
tampering of content.

Cleartext Communications - How to protect 󰢃

might contain

Cleartext Communications - How to protect 󰢃

API: 23

Cleartext Communications - How to protect 󰢃

API: 23

Cleartext Communications - How to protect 󰢃

API: 23

Cleartext Communications - How to protect 󰢃

API: 23

Cleartext Communications - How to protect 󰢃

API: 23

Cleartext Communications - How to protect 󰢃

(Source: AppSweep)

Cleartext Communications - How to protect 󰢃

https://www.guardsquare.com/appsweep-mobile-application-security-testing

API: 28

Cleartext Communications - How to protect 󰢃

API: 28

Cleartext Communications - How to protect 󰢃

(Source: AppSweep)

Cleartext Communications - How to protect 󰢃

https://www.guardsquare.com/appsweep-mobile-application-security-testing

API: 28

Cleartext Communications - How to protect 󰢃

Missing backend attestation: What is it? 🤔
● Certificate pinning restricts which certificates are considered valid for a particular website, limiting risk. Instead of allowing

any trusted certificate to be used, operators "pin" the certificate authority (CA) issuer(s), public keys or even end-entity
certificates of their choice.

might contain

Missing backend attestation - How to protect 󰢃

Missing backend attestation - How to protect 󰢃

Missing backend attestation - How to protect 󰢃

Missing backend attestation - How to protect 󰢃

2. Android Platform

OWASP MSTG definition:

● Tapjacking abuses the screen overlay feature of Android listening for taps and intercepting any
information being passed to the underlying activity. 

Tapjacking: What is it? 🤔

TapjackingTapjacking: What is it? 🤔

Tapjacking: Visualization

Tapjacking: What is it? 🤔

Tapjacking - How to protect 󰢃

Tapjacking - How to protect 󰢃

Tapjacking - How to protect 󰢃

(Source: AppSweep)

Tapjacking - How to protect 󰢃

https://www.guardsquare.com/appsweep-mobile-application-security-testing

3. Android Data Storage

● One of the focus points around the MSTG guide is how sensitive data is handled and
secured.

● What is sensitive data?

● To which places should we be careful about sending sensitive data?

Sensitive data disclosure: What is it? 🤔

● Usually some data classification policy is in place

● When no policy is in place the following list is generally considered sensitive:
○ user authentication information (credentials, PINs, etc…)
○ personally identifiable information (PII) that can be abused for identity theft: social

security numbers, credit card numbers, bank account numbers, health information
○ device identifiers that may identify a person
○ highly sensitive data whose compromise would lead to reputational harm and/or

financial costs
○ any data whose protection is a legal obligation
○ any technical data generated by the application (or related systems) and used to

protect other data or the system itself (e.g. encryption keys)

Sensitive data disclosure: What is sensitive
data? 🤔

● Internal Storage (SharedPreferences, Databases, Files, etc.)
● External Storage (Amazon S3, Google Cloud, etc.)
● Databases
● Keystore
● Logs
● Backups
● IPC Mechanisms
● External APIs

Sensitive data disclosure: Places to be
careful sending data 🤔

Sensitive data disclosure: Logging

Sensitive data disclosure: Logging
(Source: AppSweep)

https://www.guardsquare.com/appsweep-mobile-application-security-testing

● In general if you’re handling sensitive data you shouldn’t pass it to a logging function.

● Apply obfuscation tools that will remove these instructions automatically.

Logging - How to protect 󰢃

Sensitive data disclosure: Send data to web

Sensitive data disclosure: Send data to web
(Source: AppSweep)

https://www.guardsquare.com/appsweep-mobile-application-security-testing

● Never share sensitive information into app notifications

● Analyse third party-libraries being used by the application
○ Check libraries are being used according to best practices
○ If possible, review their source code
○ If not possible, run them through a static analysis tool (like dependency-check-gradle) from OWASP
○ Verify online for known vulnerabilities

● All data that’s sent to third-party services should be anonymized to prevent exposure of PII (Personal
Identifiable Information)

● When communicating with 3rd parties ensure that the connection is encrypted

● If possible encrypt the data before sending

Send data to web - How to protect 󰢃

Sensitive data disclosure: Writing data to disk

Sensitive data disclosure: Writing data to disk

(Source: AppSweep)

https://www.guardsquare.com/appsweep-mobile-application-security-testing

● Check AndroidManifest.xml for correct read/write external storage permissions (e.g. uses-permission
android:name=”android.permission.WRITE_EXTERNAL_STORAGE”)

● Check the source code for keywords and API calls that are used to store data
○ File permissions such as:

■ MODE_WORLD_READABLE or MODE_WORLD_WRITABLE: These flags should be avoided since any app will
be able to read from or write to the files even if the files are stored in the app private data directory

○ Classes and functions such as:
■ SharedPreferences class (stores key-values pairs)
■ FileOutputStream class (uses internal or external storage)
■ getExternal* functions (use external storage)
■ getWritableDatabase functions (returns a SQLiteDatabase for writing)
■ getReadableDatabase functions (returns a SQLiteDatabase for reading)
■ getCacheDir and getExternalCacheDirs functions (use cached files)

● Encryption should be implemented using proven SDK functions, however beware of the following bad practices:
○ Locally stored sensitive information encrypted via simple bit operations like XOR or bit flipping.
○ Keys used or created without Android onboard feature, such as the Android KeyStore
○ Keys disclosed by hard-coding

Writing data to disk - How to protect 󰢃

Thank you!
Questions? Please ask us! 

Andre Carvalho is a software engineer at Guardsquare.

With a background in the consulting field, he is part of the AppSweep development team and he is
currently focusing on OWASP and MAST. 
andre.carvalho@guardsquare.com  

Daniel Schwendner is a software developer at Guardsquare and master's
student at TUM.  

He is a cyber security enthusiast: with a background in software development and DevOps, his
focus is on mobile application security in the AppSweep development team. 
daniel.schwendner@guardsquare.com  

mailto:andre.carvalho@guardsquare.com
mailto:daniel.schwendner@guarduasquare.com

